Despite increasing concerns about the effect of sampling biases on our reading of the fossil record, few studies have considered the completeness of the fossil remains themselves, and those that have tend to apply non-quantitative measures of preservation quality. Here we outline two new types of metric for quantifying the completeness of the fossil remains of taxa through time, using sauropodomorph dinosaurs as a case study. The “Skeletal Completeness Metric” divides the skeleton up into percentages based on the amount of bone for each region, whereas the “Character Completeness Metric” is based on the number of characters that can be scored for each skeletal element in phylogenetic analyses. For both metrics we calculated the completeness of the most complete individual and of the type specimen. We also calculated how well the taxon as a whole is known from its remains. We then plotted these results against both geological and historical time, and compared curves of the former with fluctuations in sauropodomorph diversity, sea level, and sedimentary rock outcrop area. Completeness through the Mesozoic shows a number of peaks and troughs; the Early Jurassic (Hettangian–Sinemurian) is the interval with highest completeness, whereas the mid-to-Late Cretaceous has completeness levels that are consistently lower than the rest of the Mesozoic. Completeness shows no relationship to rock outcrop area, but it is negatively correlated with sea level during the Jurassic–Early Cretaceous and correlated with diversity in the Cretaceous. Completeness of sauropodomorph type specimens has improved from 1830 to the present, supporting the conclusions of other recent studies. However, when this time interval is partitioned, we find no trend for an increase in completeness from the 1990s onward. Moreover, the 2000s represent one of the poorest decades in terms of average type specimen completeness. These results highlight the need for quantitative methods when assessing fossil record quality through geological time or when drawing conclusions about historical trends in the completeness of taxa. The new metrics may also prove useful as sampling proxies in diversity studies.

You do not currently have access to this article.