Studies of ecological structure and diversity over time in extinct groups have always been challenged by the inability to observe the behavior of fossil taxa directly. The only available evidence for function, behavior, and interactions between taxa is the morphological characteristics of the preserved fossils. Recent studies on modern groups have shown that morphological analyses may give misleading results in terms of ecological pattern and diversity. An alternative approach is to focus on functionally relevant aspects of morphology through a paleobiomechanical paradigm. The purpose of this research is to examine variation in the lower jaw morphology in Late Devonian arthrodire placoderms and develop biomechanical metrics that can be used to quantify functional diversity among this fossil group. Nine functionally relevant morphological characters were collected for 94 isolated arthrodire inferognathals from the Gogo Formation in Western Australia and the Cleveland Shale in Ohio. These data were used to address aspects of functional morphology, biomechanical disparity, and ecological structure in arthrodire placoderms from the Late Devonian. Results were compared with results from previous morphometric work on the same set of jaws.

Statistical tests show a significant difference in functional characters between the two faunas. The differences may be related to phylogenetic differences between faunas, as the two major clades of arthrodire taxa included in this study are almost completely segregated between faunas. Average pairwise disparity analyses of the mechanical characters indicate that there is no significant difference in overall functional diversity between the Cleveland Shale and Gogo Reef arthrodire faunas. This result is at odds with previous results that show overall morphological disparity to be much higher in the Cleveland Shale. Clustering patterns within a multivariate function-space show tightly constrained functional groups of taxa independent of phylogenetic or shape-based morphological similarity. These functional groups illustrate a level of ecological diversity in Late Devonian arthrodires that is comparable to that in certain modern faunas.

Further statistical analysis of the morphological and functional disparity of these Late Devonian taxa shows a disjoint between the two measures. Model I regression analysis of and Spearman rank-correlation analysis of average pairwise morphological and functional disparity measures indicate no significant relationship between morphological and functional disparity among the jaws used in this study. Although function is obviously derived from morphology, these results show that morphological shape analysis is not necessarily a good proxy for eco-functional diversity.

You do not currently have access to this article.