Abstract

We use two approaches to test hypotheses regarding function in a group of extinct mammals (Family Mesotheriidae, Order Notoungulata) that lack any close extant relatives: a principle-derived paradigm method and empirically derived analog method. Metric and discrete morphological traits of mesotheriid postcranial elements are found to be consistent with the morphology predicted by a modified version of Hildebrand's paradigm for scratch diggers. Ratios of in-force to out-force lever arms based on skeletal elements indicate that the mesotheriids examined had limbs modified for high out-forces (i.e., they were “low geared”), consistent with the digging hypothesis. Other mesotheriid characters, such as cleft ungual phalanges, a curved olecranon, and a highly modified pelvis (with extra vertebrae incorporated into the sacrum and fusion between the ischium and the axial skeleton) are regarded as being functionally significant for digging and also occur in a variety of extant diggers. Analog methods indicate that mesotheriids share numerous traits common to a variety of extant diggers. Principal component analyses of postcranial elements indicate that mesotheriids consistently share morphometric space with larger extant fossorial mammals: aardvark, anteaters, wombats, and badger. Likewise, discriminant function analyses categorized mesotheriids as fossorial, though imperfectly analogous to the extant diggers analyzed. Thus, both theory-driven and empirically derived methods of estimating function in these extinct taxa support a digging hypothesis for the mesotheriids examined. Adaptations for digging in both the forelimb and sacropelvic functional complexes of mesotheriids provide independent support for the fossorial hypothesis.

You do not currently have access to this article.