Abstract

Accurate reconstruction of the biomass, structure, and productivity of ancient forests from their fossilized remnants remains an interesting challenge in paleoecology. In well-preserved Tertiary fossil Metasequoia forests of Canada's Arctic, in situ stumps and fragments of stems, treetops, and branches contain substantial information about tree dimensions that can be used to determine tree height, stand biomass, and other characteristics such as canopy depth and structure, and the history of stand development. To validate a method for reconstructing the biomass of the Eocene floodplain Metasequoia forests of Axel Heiberg Island, we measured stump diameters and spacing, and stem, branch, and treetop characteristics in living Metasequoia glyptostroboides and Chamaecyparis thyoides stands in ways that simulate the limited measurements that can be made in well-preserved fossil forests in Canada and probably elsewhere. We used those limited measurements to estimate tree height and volume, branch and foliar dry weights, and tree biomass. The estimates derived from the limited data set are usually within 15% of the estimates derived from the methods currently used in forest ecology for determining those metrics in modern forests. Under appropriate conditions, the biomass of ancient forests can be estimated with reasonable confidence.

You do not currently have access to this article.