Abstract

The late Paleocene-early Eocene transition was characterized by a long period of global warming that culminated with the highest temperatures of the Cenozoic. This interval is associated with a significant increase in plant diversity in temperate latitudes. However, data from tropical regions remain largely unknown. The record of pollen and spore diversity across the late Paleocene to the early middle Eocene of eight sections in central and eastern Colombia was analyzed. Several techniques, including range-through method, rarefaction, bootstrap, detrended correspondence analysis, and Shannon index, were used to assess the significance of the observed diversity pattern. The palynofloral record indicates that the lower to middle Eocene contains a significantly higher palynofloral diversity than the underlying upper Paleocene strata. This pattern is maintained after accounting for sample size, number of samples/time unit, lithofacies, and depositional systems. Eocene palynofloras have higher alpha and beta diversities and a higher equitability than Paleocene palynofloras. This increase in diversity is the product of a gradual increase in the rate of first appearances and a gradual decrease in the rate of last appearances. The early to middle Eocene increase in diversity, as well as the increase in spore abundance and diversity, suggests that tropical (equatorial) climate became wetter during the early to middle Eocene. This interpretation favors causes for early Eocene warming that do not involve significant increases in greenhouse gases. Samples from strata associated with the Paleocene/Eocene thermal maximum were barren for palynomorphs, and the effects of this climatic event on tropical vegetation remains uncertain.

You do not currently have access to this article.