Abstract

Geometric properties of the shells of 123 species of extant Bivalvia were analyzed from the viewpoint of theoretical morphology. The effects of shell form and the structure of ligament on the interumbonal space and the maximum shell opening received particular attention. The results of computer simulation and morphospace analysis indicate that possessing both prosogyrous shell form and an extended hinge without the parivincular ligament tends to cause space conflict between umbones or dorsal shell margins of right and left valves. To a large degree, a prosogyrous shell form with a long parivincular ligament helps shell opening without umbonal conflict, if the shell is flat enough to avoid the mutual interference between dorsal shell margins of closed valves. Extension of the ligament and plunging of the anterior part of the coiling axis into the ventral side provide enough space along the dorsal shell margins in which a parivincular ligament and its substrata are developed.

You do not currently have access to this article.