Thermal ionization mass spectrometers, or TIMS, were developed by the pioneers of mass spectrometry in the mid-20th century, and have since been workhorses for generating isotopic data for a wide range of elements. Later-developed mass spectrometric techniques have many advantages over TIMS, including higher spatial resolution with in situ techniques, such as secondary ion mass spectrometry (SIMS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), and greater versatility in terms the elements that can be easily-and well-measured. The reason TIMS persists as an important method for geochronology is that for some key parent-daughter systems (e.g., U–Pb, Sm–Nd), it...

First Page Preview

First page PDF preview
You do not currently have access to this article.