Abstract

Many microorganisms make extensive use of transition metal sulfide clusters in their metabolic chemistry. Similarly, transition metal sulfide minerals, e.g., pyrrhotite and pyrite, have the potential to provide the essential catalytic chemistry for Earth's earliest life. Experiments reveal that transition metal sulfides have the capacity to both catalyze and, in some cases, participate in organosynthetic reactions that bear similarity to modern biosynthetic pathways. These experiments are buttressed by recognition of natural cases of extensive abiotic organosynthesis in the Earth's crust—reactions that could have provided the first life with a large complement of functionally useful protobiological organic compounds.

You do not currently have access to this article.