We present an X-ray diffraction and multi-nuclear (2H and 43Ca) NMR study of Ca-exchanged hectorite (a smectite clay) that provides important new insight into molecular behavior at the smectite-H2O interface. Variable-temperature 43Ca MAS NMR and controlled humidity XRD indicate that Ca2+ occurs as proximity-restricted outer-sphere hydration complexes between −120 and +25 °C in a two-layer hydrate and at T ≤ −50 °C in a 2:1 water/solid paste. Changes in the 43Ca NMR peak width and position with temperature are more consistent with diffusion-related processes than with dynamics involving metal-surface interactions such as site exchange. The 2H NMR signal between −50 and +25 °C for a two-layer hydrate of Ca-hectorite is similar to that of Na- and other alkali metal hectorites and represents 2H2O molecules experiencing anisotropic motion describable using the 2H C2/C3 jump model we proposed previously. 2H T1 relaxation results for Ca- and Na-hectorite are well fit with a fast-exchange limit, rotational diffusion model for 2H2O dynamics, yielding GHz-scale rotational reorientation rates compatible with the C3 component of the C2/C3 hopping model. The apparent activation energy for 2H2O rotational diffusion in the two-layer hydrate is greater for Ca-hectorite than Na-hectorite (25.1 vs. 21.1 kJ/mol), consistent with the greater affinity of Ca2+ for H2O. The results support the general principle that the dynamic mechanisms of proximity-restricted H2O are only weakly influenced by the cation in alkali metal and alkaline earth metal smectites and provide critical evidence that the NMR resonances of charge-balancing cations in smectites become increasingly influenced by diffusion-like dynamic processes at low temperatures as the charge density of the unhydrated cation increases.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.