Abstract

The thermodynamics of mixing and its dependence on cation distribution in the Fe3O4–Fe2TiO4 (magnetite-ulvöspinel) spinel solid solution were studied using high-temperature oxide melt solution calorimetry and a range of structural and spectroscopic probes. The enthalpies of formation of ilmenite and ulvöspinel from the oxides and from the elements were obtained using oxidative drop solution calorimetry at 973 K in molten sodium molybdate. The enthalpy of mixing, determined from the fit to the measured enthalpies of drop solution calorimetry, is endothermic and represented by a quadratic formalism, ΔHmix = (22.60 ± 8.46)x(1 − x) kJ/mol, where x is the mole fraction of ulvöspinel. The entropies of mixing are more complex than those for a regular solution and have been calculated based on average measured and theoretical cation distributions. Calculated free energies of mixing show evidence for a solvus at low temperature in good agreement with that observed experimentally.

You do not currently have access to this article.