An assemblage of primary, extremely As- and Sb-rich, Nb-Ta minerals from the Szklary pegmatite includes columbite-(Fe), columbite-(Mn), tantalite-(Mn), stibiocolumbite, stibiotantalite, an as yet unnamed (As,Sb,U)-rich (Ta,Ti)-oxide, Mn3UAs2Sb2Ta2Ti2O20, and holtite. Anomalous trends of Mn-Fe and Ta-Nb fractionation in the columbite group and crystallization sequences in the primary assemblage can be explained by the contamination of the pegmatite-forming melt by ultramafic and mafic wall-rocks, the competition among these minerals for Ta and Sb and with biotite and tourmaline for Mg, Fe, and Ti, and local variations in melt composition. A hot magmatic fluid, exsolved from the parental melt, reacted with the primary Nb-Ta oxides, inducing two different patterns of alteration. The columbite-group minerals were altered to fersmite, pyrochlore, and bismutopyrochlore locally grading to plumbopyrochlore, whereas stibiocolumbite, stibiotantalite, and the (As,Sb,U)-rich (Ta,Ti)-oxide altered to stibiomicrolite, uranmicrolite grading to betafite, and then to bismutomicrolite or Bi-dominant betafite. In all of the secondary pyrochlore-group minerals, Ta-Nb fractionation is comparable to, or only slightly greater, than that in the primary Nb-Ta oxides, indicating a modest differentiation of the residual melt coexisting with the fluid.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.