Single-crystal diffraction data collected for CaFe2O4 at high pressure reveal above 50 GPa an isosymmetric phase transition (i.e., no change in symmetry) marked by a volume decrease of 8.4%. X-ray emission spectroscopic data at ambient and high pressure confirm that the nature of the phase transition is related to the Fe3+ high-spin/low-spin transition. The bulk modulus K0 calculated with a Birch Murnaghan EoS (K′ = 4) is remarkably different [K0 = 159(2) GPa for CaFe2O4 “high spin” and K0 = 235(10) GPa for CaFe2O4 “low spin”]. Crystal structure refinements reveal a decrease of 12% of the Fe3+ crystallographic site volume. The geometrical features of the low-spin Fe3+ crystallographic site at high pressure (bond lengths, volume) indicate a relevant decrease of Fe3+-O bond lengths, and the results are in agreement with tabulated values for crystal radii of Fe3+ in high- and low-spin state. The reduced crystal size of Fe3+ in the low-spin state suggest that in lower mantle assemblages, Fe3+ partitioning in crystallographic sites should be strongly affected by the iron spin state.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.