The elastic properties of jarosite were investigated using synchrotron X-ray diffraction coupled with a multi-anvil apparatus at pressures up to 8.1 GPa. With increasing pressure, the c dimension contracts much more rapidly than a, resulting in a large anisotropy in compression. This behavior is consistent with the layered nature of the jarosite structure, in which the (001) [Fe(O,OH)6]/[SO4] sheets are held together via relatively weak K-O and hydrogen bonds. Fitting of the measured unit-cell parameters to the second-order Birch-Murnaghan equation of state yielded a bulk modulus of 55.7 ± 1.4 GPa and zero-pressure linear compressibilities of 3.2 × 10−3 GPa−1 for the a axis and 13.6 × 10−3 GPa−1 for the c axis. These parameters represent the first experimental determination of the elastic properties of jarosite.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.