We have investigated the thermal expansion of several synthetic feldspars, including Li-feldspar, rubicline (Rb-microcline), Rb-sanidine, and buddingtonite (NH4-feldspar). When analyzed in conjunction with earlier data on both ordered and disordered Na- and K-feldspars, it is clear that the coefficient of thermal expansion (α) decreases dramatically, and linearly, with increasing room-temperature volume. For “AlSi3” feldspars, then, chemical expansion limits thermal expansion. The relationship between α and room-temperature volume provides a useful predictive tool based simply on the volume of a feldspar at room temperature. This relationship also reveals that volumes of K-Na mixing in naturally occurring alkali feldspars decrease with increasing temperature.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.