Abstract

A method for conducting successful low pressure (0.3–0.5 GPa) and high temperature (900–1200 °C) experiments in the 19 mm piston-cylinder is presented. The technique is capable of running high fluid/melt experiments with minimum hydrogen loss, attaining precise, reproducible pressures (±10%), and has fast initial quench rates (>150 °C/s). These abilities are invaluable when conducting low pressure, fluid-saturated experiments such as phase equilibria, volatile solubility, and dynamic degassing experiments that are relevant to sub-volcanic magma chamber processes. A double capsule construction is also described that uses a solid oxygen buffer, and minimizes both contamination of the sample by carbon and the loss of iron in the melt to the capsule walls.

You do not currently have access to this article.