Melanophlogite, a clathrasil, possesses a framework of corner-linked silica tetrahedra forming framework cavities that can enclose small guest molecules. Synchrotron X-ray diffraction experiments of the guest-free melanophlogite have been conducted at pressures up to 12 GPa and temperatures up to 1473 K. Upon compression at room temperature, melanophlogite gradually lost its crystallinity and became completely X-ray amorphous at ~8 GPa. The amorphization process was similar to those of denser silica polymorphs, but it reached completion at a much lower pressure (e.g., quartz becomes X-ray amorphous at ~30 GPa). The decreased amorphization pressure of melanophlogite may be attributed to its lower framework density and the ease of bending of its Si-O-Si linkages, thereby accelerating the collapse of the structure under high pressure. Determination of cell volumes of melanophlogite prior to its amorphization yielded a room-temperature bulk modulus of 26.3 ± 1.7 GPa, which is consistent with the relatively large compressibilities reported for the structurally similar zeolites. When heated at ~8 GPa, the amorphous phase started to crystallize at 873 K into coesite, the stable silica phase at these pressure and temperature conditions. Thus the occurrence of pressure-induced amorphization in melanophlogite appears to result from the kinetic hindrance to its transformation to the thermodynamically stable coesite.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.