The crystal structure of a synthetic potassium-rich clinopyroxene, (Ca0.88K0.12)(Mg0.83Al0.17)(Si1.98 Al0.02)O6, was studied using high-pressure single-crystal X-ray diffraction methods. A four-pin diamond anvil cell with 4:1 methanol:ethanol pressure medium was used to achieve pressures to 9.72 GPa. Unit-cell data were measured at 17 pressures, and intensity data were collected at 6 pressures. Fitting the P-V data to the third-order Birch-Murnaghan equation of state yields V0 = 435.49(3) Å3, K0 = 129(1) GPa, K′ = 2.7(3). Anisotropic compression was observed with unit strain axial ratios of 1:1.94:1.90. Unit-cell parameters decrease gradually as a function of pressure with axial compressibilities βb > βc ~ βa. They match those found for kosmochlor but are stiffer than those observed for synthetic diopside and hedenbergite. Compressibilities of the bond distances within the M2, M1, and T polyhedra show significant anisotropy. The incorporation of K into the clinopyroxene structure has little effect on its compressibility, although the concomitant substitution of Al in M1 from the K-Jd component reduces its compressibility. The K atom is softer than the M2 polyhedron and thus shrinks enough at high pressure to fit into the pyroxene structure.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.