This study aims to contribute to a better understanding of the nature and evolution mechanism of interstratified clay minerals. We examined the <2 μm or <0.2 μm size fraction of interstratified kaolinite-smectite (K-S) formed by hydrothermal and hydrogenic alteration of volcanogenic material from a Tortonian clay deposit (Almería, Spain), a weathered Eocene volcanic ash (Yucatan, Mexico), and a weathered Jurassic bentonite (Northamptonshire, England). The methods used were X-ray diffraction analysis (XRD) of random and oriented preparations, thermogravimetry, chemical analysis, and 29Si MAS nuclear magnetic resonance. The proportions of kaolinite and smectite in K-S (%K) were determined by fitting the XRD patterns of ethylene-glycol-saturated samples with patterns calculated with the NEWMOD computer program. The obtained range of compositions is 0–85%K. A comparison of the results from the various techniques showed non-linear relationships, indicating that the layers in K-S are complex and hybrid in nature. The smectiteto-kaolinite reaction is a solid-state transformation proceeding through formation of kaolinite-like patches within the smectite layers. The process consists of several non-simultaneous stages: (1) removal of parts of the tetrahedral sheet, resulting in formation of kaolinite-like patches; (2) layer collapse to ~7 Å where the kaolinite-like patches are sufficiently large; (3) Al for Mg substitution in the octahedral sheet, simultaneous or slightly delayed with respect to layer collapse, causing a layer-charge decrease and loss of interlayer cations; (4) Si for Al replacement in the tetrahedral sheet and further loss of interlayer cations. Iron remains in the kaolinite or is lost at the latest stages of the process.

You do not currently have access to this article.