A phase transition of MgGeO3 perovskite was examined at high-pressure and -temperature using synchrotron X-ray diffraction measurements. The results demonstrate that it transforms to a CaIrO3-type post-perovskite phase above 63 GPa at 1800 K. The density increase is 1.5% at the transition pressure. These observations confirm that MgGeO3 is a low-pressure analogue to MgSiO3, for which a similar phase transition was recently found above 125 GPa and 2500 K. The unit-cell parameters of MgGeO3 post-perovskite phase obtained at 300 K during decompression from 79 to 6 GPa show that the b-axis is significantly more compressible than are the a- and c-axes, which could be due to the GeO6-octahedral sheet stacking structure along b. The bulk modulus was determined to be K0 = 192(±5) GPa with a fixed pressure derivative of the bulk modulus, K′, of 4.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.