The structure of opal-A was not fully understood due to its poorly crystalline nature. To better understand its structural characteristics, we have analyzed opal-AN (amorphous-network) and opal-AG (amorphous-gel) using synchrotron X-ray diffraction (XRD), pair-distribution function (PDF) analysis, and transmission electron microscopy (TEM). Opal-AN mainly exists as an aggregation of different sizes of nanospheres (<5 nm) generating banded features, whereas opal-AG displays close-packed silica nanospheres with a diameter of ~400 nm. TEM energy-dispersive X-ray spectroscopy (EDS) indicates that Na, Al, K, and Ca are present as trace elements in opal-AN and opal-AG. XRD patterns of both samples show one prominent peak at ~4.0 Å, together with broad peaks at ~2.0, ~1.45, and ~1.2 Å. Previous studies only identified the ~4.0 Å diffraction peak for the definition of opal-A. Hence, opal-A needs to be redefined by taking into account the newly observed three broad peaks. PDF patterns of opal-AN and opal-AG reveal short-range atomic pairs (<15 Å) with almost identical profiles. Both phases exhibit Si-O correlation at 1.61 Å and O-O correlation at 2.64 Å in their [SiO4] tetrahedra. The currently accepted opal structure is disordered intergrowths of cristobalite- and tridymite-like domains consisting of six-membered rings of [SiO4] tetrahedra. Our PDF analyses have identified additional, coesite-like nanodomains comprising four-membered [SiO4] rings. Moreover, we have identified eight-membered rings that can be generated by twinning and stacking faults from six-membered rings. The coesite nanodomains in opal-A may be a precursor for coesite micro-crystals formed by the impact of supersonic micro-projectiles at low pressures. More broadly, our study has also demonstrated that the combined approach of synchrotron XRD/PDF with TEM is a powerful approach to determine the structures of poorly crystallized minerals.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.