The oxygen fugacity in the interior of the Earth is largely controlled by iron-bearing minerals. Recent studies have reported various iron oxides with chemical compositions between FeO and Fe3O4 above ~10 GPa. However, the stabilities of these high-pressure iron oxides remain mostly uninvestigated. In this study, we performed in situ X-ray diffraction (XRD) measurements in a laser-heated diamond-anvil cell (DAC) to determine the phase relations in both Fe5O6 and Fe4O5 bulk compositions to 61 GPa and to 2720 K. The results show that Fe5O6 is a high-temperature phase stable above 1600 K and ~10 GPa, while FeO + Fe4O5 are formed at relatively low temperatures. We observed the decomposition of Fe5O6 into 2FeO + Fe3O4 above 38 GPa and the decomposition of Fe4O5 into FeO + h-Fe3O4 at a similar pressure range. The coexistence of FeO and Fe3O4 indicates that none of the recently discovered compounds between FeO and Fe3O4 (i.e., Fe5O6, Fe9O11, Fe4O5, and Fe7O9) are formed beyond ~40 GPa at 1800 K, corresponding to conditions in the shallow lower mantle. Additionally, as some superdeep diamonds have genetic links with these high-pressure iron oxides, our results give constraints on pressure and temperature conditions of their formation.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.