Abstract

Peridotites dredged from mid-ocean ridges and glassy mid-ocean ridge basalts (MORB) transmit information about the oxygen fugacity (fO2) of Earth's convecting upper mantle to the surface. Equilibrium assemblages of olivine+orthopyroxene+spinel in abyssal peridotites and Fe3+/∑Fe ratios in MORB glasses measured by X-ray absorption near-edge structure (XANES) provide independent estimates of MORB source region fO2, with the former recording fO2 approximately 0.8 log units lower than the latter relative to the quartz-fayalite-magnetite (QFM) buffer. To test cross-compatibility of these oxybarometers and examine the compositional effects of changing fO2 on a peridotite plus melt system over a range of Earth-relevant fO2, we performed a series of experiments at 0.1 MPa and fO2 controlled by CO-CO2 gas mixes between QFM-1.87 and QFM+2.23 in a system containing basaltic andesite melt saturated in olivine, orthopyroxene, and spinel

Oxygen fugacities recorded by each method are in agreement with each other and with the fO2 measured in the furnace. Measurements of fO2 from the two oxybarometers agree to within 1σ in all experiments. These results demonstrate that the two methods are directly comparable and differences between fO2 measured in abyssal peridotites and MORB result from geographic sampling bias, petrological processes that change fO2 in these samples after separation of melts and residues, or abyssal peridotites may not be residues of MORB melting.

As fO2 increases, spinel Fe3+ concentrations increase only at the expense of Cr from QFM-1.87 to QFM-0.11. Above QFM, Al is also diluted in spinel as the cation proportion of Fe3+ increases. None of the three spinel models tested, MELTS (Ghiorso and Sack 1995), SPINMELT (Ariskin and Nikolaev 1996), and MELT_CHROMITE (Poustovetov and Roeder 2001), describe these compositional effects, and we demonstrate that MELTS predicts residues that are too oxidized by >1 log unit to have equilibrated with the coexisting liquid phase. Spinels generated in this study can be used to improve future thermodynamic models needed to predict compositional changes in spinels caused by partial melting of peridotites in the mantle or by metamorphic reactions as peridotites cool in the lithosphere.

In our experimental series, where the ratio of Fe2O3/FeO in the melt varies while other melt compositional parameters remain nearly constant, experimental melt fraction remains constant, and Fe3+ becomes increasingly compatible in spinel as fO2 increases. Instead of promoting melting, increasing the bulk Fe3+/∑Fe ratio in peridotite drives reactions analogous to the fayalite-ferrosilite-magnetite reaction. This may partly explain the absence of correlation between Na2O and Fe2O3 in fractionation-corrected MORB.

You do not currently have access to this article.