The high-pressure structural and electronic behavior of α-, β-, and γ-FeOOH were studied in situ using a combination of synchrotron X-ray diffraction (XRD) and X-ray emission spectroscopy (XES). We monitored α-FeOOH by XES as a function of pressure up to 85 GPa and observed an electronic spin transition that began at approximately 50 GPa, which is consistent with previous results. In the γ-FeOOH sample, we see the initiation of a spin transition at 35 GPa that remains incomplete up to 65 GPa. β-FeOOH does not show any indication of a spin transition up to 65 GPa. Analysis of the high-pressure XRD data shows that neither β-FeOOH nor γ-FeOOH transform to new crystal structures, and both amorphize above 20 GPa. Comparing our EOS results for the β and γ phases with recently published data on the α and ε phases, we found that β-FeOOH exhibits distinct behavior from the other three polymorphs, as it is significantly less compressible and does not undergo a spin transition. A systematic examination of these iron hydroxide polymorphs as a function of pressure can provide insight into the relationship between electronic spin transitions and structural transitions in these OH- and Fe3+-bearing phases that may have implications on our understanding of the water content and oxidation state of the mantle.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.