A structural derivative of quartz with the composition Mg0.5AlSiO4 has been grown from glass and characterized using synchrotron X-ray diffraction (XRD), transmission electron microscopy (TEM), and 29Si nuclear magnetic resonance (NMR) spectroscopy. Rietveld analysis of the XRD data indicates that the framework of Mg0.5AlSiO4 is isostructural with α-quartz, rather than β-quartz, as is consistent with previous theoretical modeling (Sternitzke and Müller 1991). Al and Si exhibit long-range disorder over the framework tetrahedral sites, indicated by the absence of the superlattice reflections corresponding to the doubling of c relative to that of quartz. Nevertheless, 29Si NMR measurements show that Al and Si exhibit partial short-range order with an ordering degree of 56%. Electron diffraction reveals superlattice reflections indicative of doubled periodicities along the a-axes. Fourier electron density maps show that Mg occupies channel sites that each are bonded to six O atoms, in contrast to the tetrahedral coordination of Li in the β-quartz-type framework for β-eucryptite, LiAlSiO4. Furthermore, the concentrations of Mg in adjacent channels are different, resulting in framework distortions that generate the superstructures along a.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.