An atypical asbestiform sepiolite occurrence with exceptionally long fibres wrapped by a sheath of aliphatic hydrocarbons was found in the Gressoney Valley (Italian Western Alps) while monitoring asbestos presence in outcrops of serpentinite rocks. Microscopic and Fourier transform infrared analyses proved that these fibres, apparently up to several cm long, are formed by bundles of thinner fibrils (average length: 150 μm) potentially dispersible in the environment. When observed using transmission electron microscopy these fibrils show a rhomboidal to parallelogram cross section (<1 μm), of which surfaces are covered mostly by an aliphatic hydrocarbon film – an association not reported in the literature. The sepiolite fibrils and their organic coating probably originated in sequential steps from precipitation of Si/Mg rich hydrothermal fluids, resulting from serpentinization of olivine and clinopyroxene and a Fischer-Tropsch-type reaction. The presence of hydrocarbons has serious implications for the sepiolite habit, as the organic wrap interacts with the fibril's surface reducing the amount of adsorbed water and favouring the fragmentation of thicker units into thinner ones, due to an ‘opening’ process implying separation along z and cleavage on (110). This defibrillation mechanism, coupled with the extraordinary length, further increases the aspect ratio of these fibrils (length/width >>3) thus amplifying their potential danger for human health when dispersed in air and inhaled.

You do not currently have access to this article.