Abstract

Ultrahigh-pressure and -temperature (P-T) experimental techniques have progressed rapidly in recent years. By combining them with X-ray diffraction measurements at synchrotron radiation facilities, it is now possible to examine deep Earth mineralogy in situ at relevant high P-T conditions in a laser-heated diamond anvil cell (DAC). The lowermost part of the mantle, known as the D″ layer, has long been enigmatic because of a number of unexplained seismological features. Nevertheless, the discovery of a phase transition from MgSiO3 perovskite to ‘post-perovskite’ above 120 GPa and 2400 K indicates that post-perovskite is a principal constituent in the lowermost mantle, which is compatible with seismic observations. The ultrahigh P-T conditions of the Earth's core have not been accessible by static experiments, but the structure and phase transition of Fe and Fe-alloys are now being examined up to 400 GPa and 6000 K by laser-heated DAC studies.

You do not currently have access to this article.