Abstract

The new mineral oskarssonite (IMA2012-088), with ideal formula AlF3, was found in August 2009 at the surface of fumaroles on the Eldfell volcano, Heimaey Island, Iceland (GPS coordinates 63°25′58.9″N 20°14′50.3″W). It occurs as sub-micron-sized crystals forming a white powder in association with anhydrite, bassanite, gypsum, jarosite, anatase, hematite, opal, ralstonite, jakobssonite and meniaylovite. Chemical analyses by energy-dispersive spectrometry with a scanning electron-microscope produced the following mean elemental composition: Al, 31.70; F, 58.41; O, 9.22; total 99.33 wt.%. The empirical chemical formula is AlF2.6(OH)0.5 which suggests partial substitution of F by OH. Oskarssonite is rhombohedral, space group Rc, with ah = 4.9817(4) Å, c = 12.387(1) Å, Vuc = 266.23(5) Å3, Z = 6. The five strongest lines in the powder diffraction diagram [d in Å (I) (hkl)] are as follows: 3.54 (100) (012), 2.131 (13) (113), 1.771 (20) (024), 1.59 (15) (116), 1.574 (10) (122). Rietveld refinement confirms the identity of oskarssonite with the synthetic rhombohedral form of AlF3. Its structure can be described as a rhombohedral deformation of the idealized cubic perovskite-type octahedral framework of corner-sharing AlF6 groups. Oskarssonite appears in the surface part of the fumaroles where fluorides are abundant. At greater depths (below 10 cm) sulfates dominate among the fumarolic minerals. In accordance with its occurrence, we surmise that oskarssonite forms in the later stages of the fumarolic activity in an environment poor in alkalies and Mg. Ralstonite (NaxMgxAl1–xF3(H2O)y), which, unlike oskarssonite, contains Na and Mg as important constituents, dominated in the first-formed fumaroles, but now, 41 years after the eruption of Eldfell, is only a minor phase. The new mineral is named after the Icelandic volcanologist Niels Oskarsson.

You do not currently have access to this article.