Abstract

Yellow needles of ‘iodolaurionite’, Pb(OH)I, and a novel compound Pb2O(OH)I, have been prepared by hydrothermal reactions of PbO and PbI2 at 170°C. The crystal structure of ’iodolaurionite’, Pb(OH)I (orthorhombic, Pnma, a = 7.8244(8), b = 4.2107(4), c = 10.4724(10) Å, V = 345.03(6) Å3, Z = 4) has been refined to R1 = 0.041 for 129 independent observed reflections. The structure is based on the OHPb3 triangles sharing common edges to produce single [OHPb]+ chains extending along the b axis and parallel to the ab plane. The three-dimensional integrity of the structure is provided by the Pb–I bonds and the O–H⋯I hydrogen bonding. The structure is isotypic with that of laurionite, Pb(OH)Cl. The crystal structure of Pb2O(OH)I (monoclinic, C2/m, a = 13.711(3), b = 4.0975(10), c = 9.584(2) Å, β = 110.64(1)°, V = 503.9(2) Å3, Z = 4), has been solved by direct methods and refined to R1 = 0.053 for 586 independent observed reflections. In the structure of Pb2O(OH)I, O(1)Pb4 tetrahedra link together by sharing edges and corners to form [OPb2]2+ chains similar to those observed in sidpietersite. The O(2) atoms belong to hydroxyl groups attached to both sides of the chains to produce novel [O(OH)Pb2]+ 1D units. The [O(OH)Pb2]+ units are extended parallel to the b axis and lie within the bc plane. The [O(OH)Pb2]+ units are linked together via hydrogen bonding in the (100) plane and by weak Pb–I bonds in the [100] direction. The [O(OH)Pb2]+ bands can be obtained from the [OPb] layer of OPb4 tetrahedra present in the structure of tetragonal PbO (litharge). The continuous [OPb] layer has to be broken into [O2Pb2] bands containing 3- and 4-coordinated O atoms in the 1:1 ratio with subsequent protonation of the 3-coordinated O sites. Relations of Pb(OH)I and Pb2O(OH)I to known Pb hydroxy- and oxyhalides are described briefly.

You do not currently have access to this article.