The structure topology and crystal chemistry have been considered for ten astrophyllite-group minerals that contain the HOH layer, a central trioctahedral (O) sheet and two adjacent (H) sheets of [5]- and [6]-coordinated D polyhedra and the astrophyllite (T4O12) ribbons. The HOH layer is characterized by a planar cell with a ~5.4, b ~11.9 Å and a^b ~103°. The ideal composition of the O sheet is Fe72+ (astrophyllite) or Mn72+ (kupletskite). All structures consist of an HOH layer and an I (intermediate) block that consists of atoms between two HOH layers. In the astrophyllite group, there are two types of structures based on the type of linkage of HOH layers: (1) HOH layers link directly where they share common vertices of D octahedra, and (2) HOH layers do not link directly via polyhedra of the H sheets. The type-1 structure occurs in astrophyllite, niobophyllite, nalivkinite, tarbagataite, kupletskite, niobokupletskite and kupletskite-(Cs); the type-2 structure occurs in magnesioastrophyllite, sveinbergeite and devitoite. The general formulae for the eight astrophyllite-group minerals (astrophyllite, niobophyllite, nalivkinite, tarbagataite, kupletskite, niobokupletskite, kupletskite-(Cs), magnesioastrophyllite) and for the extended astrophyllite group including devitoite and sveinbergeite are A2BC7D2T8O26(OH)4X0– and A2pBrC7D2(T4O12)2IXD2OXA4OXDnP, respectively, where C and D are cations of the O and H sheets, C = [6](Fe2+, Mn, Fe3+, Na, Mg, Zn) at the M(1–4) sites; D = [6,5](Ti, Nb, Zr, Fe3+); T = Si, minor Al; A2pBrI is the composition of the I block where p = 1,2; r = 1,2; A = K, Cs, Li, Ba, H2O, □; B = Na, Ca, Ba, H2O, □; I represents the composition of the central part of the I block, excluding peripheral layers of the form A2B; X = O, OH, F and H2O; n = 0, 1, 2. Two topological issues have been considered: (1) the pattern of sizes of the M octahedra in the O sheet, M(1) > M(2) > M(3) > M(4) and (2) different topologies of the HOH layer in magnesioastrophyllite and all other structures of the astrophyllite group.

You do not currently have access to this article.