Advances in the design of environmental reaction cells and in the collection of X-ray diffraction data are transforming our ability to study mineral-fluid interactions. The resulting increase in time resolution now allows for the determination of rate laws for mineral reactions that are coupled to atomic-scale changes in crystal structure. Here we address the extension of time-resolved synchrotron diffraction techniques to four areas of critical importance to the cycling of metals in soils: (1) cation exchange; (2) biomineralization; (3) stable isotope fractionation during redox reactions; and (4) nucleation and growth of nanoscale oxyhydroxides.

You do not currently have access to this article.