Abstract

An investigation and evaluation of the redox conditions around an underground rock cavern are important from the viewpoint of the safety assessment of the subsurface geological disposal of radioactive wastes. The in situ redox conditions around a cavern excavated in Neogene pyroclastic rocks were investigated. Rock samples were collected from a tunnel wall crossing the oxidation front, and the properties of pore water seeping into small holes drilled in the tunnel wall were determined. Chemical analysis of the rock samples revealed that pyrite-bearing rocks below the oxidation front were oxidized by the dissolved oxygen in the groundwater infiltrating from the surface. The water properties changed with increasing oxidation of the rocks. From the amount of oxygen-consuming components in the rocks, the migration rate of the oxidation front was estimated to be ~0.2 mm/y due to the flow rate of groundwater (0.1 m/y) containing oxygen.

You do not currently have access to this article.