High-resolution imaging of electron-transparent samples using a scanning electron microscope, here termed low voltage (LV) STEM, is a new and valuable technique for studying Earth and planetary materials. The most effective method of LV-STEM imaging uses a pair of electron detectors positioned side-by-side beneath the thin sample. The detector directly underlying the sample forms bright-field images dominated by mass-thickness contrast. Activation of the detector offset from the sample yields dark-field images with a greater component of atomic number contrast. LV-STEM images with significant diffraction contrast can also be obtained, but require careful positioning of the sample relative to the electron detectors. In this study LV-STEM was used successfully to image sub-μm sized kaolinite crystals and tens of nm-sized etch pits on the gold-coated surfaces of weathered feldspar grains. Dark-field LV-STEM was also especially effective for characterizing very fine-scale intergrowths of Mg- and Fe-rich phyllosilicates within uniformly thin samples of the Murchison meteorite prepared using the focused ion beam (FIB) technique. LV-STEM is a quick and easy method for characterizing the morphology and internal structure of mineral and rock samples and may prove to be especially useful in geomicrobiology research.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.