Abstract

A uranopilite from The South Alligator River, Northern Territory, Australia, has been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) with EDAX attachment, and thermogravimetry in conjunction with evolved gas mass spectrometry. The XRD shows that the mineral is a pure uranopilite with few if any impurities. The SEM images show that the uranopilite consists of elongated crystals, up to 50 μm long and 5 μm wide. Thermogravimetry combined with mass spectrometry shows that dehydration occurs at ~31°C resulting in the formation of metauranopilite. The first dehydration step over 20–71°C corresponds to a decrease of 5.4 wt.%, equivalent to 6.076 H2O. The second dehydration step, over the temperature range 71–162.4°C corresponds to a decrease of 4.7 wt.%, equivalent to 5.288 H2O, making a total of 11.364 moles of H2O, close to 12 H2O for uranopilite.

Dehydroxylation takes place over the temperature range 80–160°C. The loss of sulphate occurs at higher temperatures in two steps at 622 and 636°C. A mass loss also occurs at 755°C, accounted for by evolved oxygen.

You do not currently have access to this article.