Abstract

Basalt glass from Kilauea, Hawaii (SBG) starts to crystallize upon heat treatment in air at ~840°C. In addition, oxidation takes place. The kinetics of both processes may be readily quantified though the mechanism is difficult to access. This work investigates the relationship between these processes, crystallization and oxidation, and the escape of volatiles from the glass/liquid upon reheating. Evolved gas analyses and differential scanning calorimetry are the techniques used. In addition, isothermal heat treatment in argon is carried out in order to eliminate the external reason for oxidation, the oxygen gradient, and to focus on intrinsic oxidation. Products are examined with 57Fe Mössbauer spectroscopy. As expected, degassing temperatures of SBG, and of two MORB samples, considered for comparison, are above the glass transition temperature. We find no convincing evidence of intrinsic oxidation. Degassing is likely to induce interface-controlled crystallization.

You do not currently have access to this article.