Abstract

Metabasites in the Dalradian Argyll and Southern Highland Groups experienced multiphase deformation and coeval Barrovian-type prograde and retrograde metamorphism during the Caledonian Grampian orogeny. Metamorphic Ca-amphiboles crystallized with plagioclase, epidote, chlorite and quartz, and sometimes with garnet and clinopyroxene. The minor changes in metabasite mineral assemblages and systematic mineral-chemical variations in Ca-amphibole confirm the classical concept of increasing metamorphic grade in metapelitic Chlorite to Sillimanite zones. In the Chlorite zone, high-Ti brown amphibole enclosed by green Ca-amphibole is interpreted as a magmatic relic. In the Chlorite, Biotite, Garnet and Andalusite zones, Ca-amphibole displays zonation with actinolite in cores and magnesio-hornblende to tschermakite in rims. Poor amphibole zonations occur in the Kyanite and Sillimanite zones. Ca-amphibole zonations are best described in terms of IVAl, VIAl and Ti which semiquantitatively monitor temperature and pressure changes. Maximal IVAl in amphibole increase with metamorphic grade. Empirically calibrated amphibole equilibria enabled us to reconstruct coherent prograde P-T paths and maximal P and T from the mineral zones; with Tmax of 680±50°C in theSillimanite zone and Pmax of 8±1.2 kbar in the Kyanite zone. Prograde P-T paths indicate that elevated geothermal gradients should be considered even at the beginning of the Grampian Barrovian metamorphism.

You do not currently have access to this article.