Abstract

Feldspars from the Karkonosze pluton (SW Poland) display many features compatible with magma mixing. The mixing hypothesis has been tested using a geochemical mass balance law resulting in two possible paths of magma hybridization. Based on the results of the geochemical calculation, feldspar samples have been chosen along both mixing lines for cathodoluminescence (CL) investigation which was used as the main tool for the reconstruction of their crystallization path. Changes in the conditions of nucleation and crystallization of the feldspars as well as their movement within the magma chamber have been recognized due to different luminescence characteristics. These changes in the conditions of crystallization obtained by CL allow a precise determination of the genetic affinity of the samples to more mafic or more felsic environments.

The results of the present study proved CL to be a valuable tool for the study of crystal-growth morphologies in a dynamic, turbulent environment and also as a geochemical tool for the reconstruction of various petrogenetic mechanisms (e.g. magma hybridization). Accordingly, the combination of CL with geochemical modelling provides corresponding information about magma evolution in an open system.

You do not currently have access to this article.