This paper presents the results of a laboratory study on the influence of heterotrophic bacteria on dissolution of a silicate mineral (K-feldspar) under a variety of growth conditions. Twenty seven strains of heterotrophic bacteria were isolated from a feldspar-rich soil (Shap, NW England). Liquid and solid minimal aerobic media (C/N-sufficient, K-limited, Fe-limited, N-limited and glucose/NH4Cl only) at 26°C were used for isolation of the bacteria. The media selected bacterial isolates that were fast-growing aerobic heterotrophs able to use glucose as the sole source of carbon and energy. The extent of mineral dissolution (in the presence of the isolates) was assessed after 48 h of incubation by measuring the release of Al from the K-feldspar by ICP-AES. More detailed dissolution experiments were carried out with one of the strains, Serratia marcescens, an isolate that was very effective in enhancing feldspar dissolution. The main conclusions of this study are: (1) the degree of enhancement of K-feldspar dissolution varied with bacterial isolate and growth conditions; (2) enhancement of dissolution began during stationary phase growth; (3) the production of chelating compounds (exopolymers, siderophores, pigments) during the stationary phase might be a possible mechanism for bacterially enhanced K-feldspar dissolution; (4) the frequent sub-culturing of isolates can have a significant effect on their physiological characteristics and may possibly influence their capacity to enhance mineral dissolution.

You do not currently have access to this article.