Aspects of the (bio)geochemical cycling of metals (including Fe, Cu, Pb, Zn, Hg, As, Sb, U, Tc, Np) at or near the Earth’s surface are discussed with reference to the recent work of the authors. Key stages of the breakdown of metalliferous minerals, transport of metals as solution complexes or colloidal precipitates, and interaction of metals in solution with the surfaces of minerals are considered. Emphasis is on molecular-scale observations using techniques such as scanning probe microscopy, photoelectron and (synchrotron) X-ray spectroscopies. The importance of the biological/mineralogical interface is also emphasized with reference to the bacterial colonization of mineral surfaces and formation of biofilms, and their influence on mineral surface reactivity and flow of fluids through rocks and sediments. Also noted is the importance of relating molecular and micro-scale observations to macroscopic phenomena. Molecular-scale understanding is central to attempts to model many processes of relevance in mineral exploration and exploitation, and in the containment of hazardous wastes and remediation of polluted areas. Mineralogists have a central role to play in the relevant environmental sciences and technologies.

You do not currently have access to this article.