Abstract

Apatite-dolomite carbonatite at Lesnaya Varaka. Kola Peninsula, Russia, hosts intricate mineral intergrowths composed of lueshite in the core and pyrochlore-group minerals in the rim. Lueshite is a primary Nb-bearing phase in the carbonatite and ranges in composition from certain lueshite to almost pure NaNbO 3 . For comparison, the compositional variation of lueshite from the Kovdor and Sallanlatvi carbonatites is described. At Lesnaya Varaka, lueshite is replaced by nearly stoichiometric Na-Ca pyrochlore due to late-stage re-equilibration in the carbonatite system. X-ray powder diffraction data for both minerals are presented. Barian strontiopyrochlore, occurring as replacement mantles on Na-Ca pyrochlore, contains up to 43% Sr and 8-18% Ba at the A-site, and shows a high degree of hydration and strong ionic deficiency at the A- and Y-sites. This mineral is metamict and, upon heating, recrystallises to an aeschynite-type structure. Monazite-(Ce) found as minute crystals in fractures, represents the solid solution between monazite-(Ce) CePO 4 , brabantite CaTh(PO 4 ) 2 and SrTh(PO 4 ) 2 . Our data indicate the high capacity of the monazite structure for Th and accompanying divalent cations at low temperatures and pressures that has a direct relevance to solving the problem of long-term conservation of radioactive wastes. Monazite-(Ce) and barian strontiopyrochlore are products of low-temperature hydrothermal or secondary (hypergene) alteration of the primary mineral assemblage of the carbonatite.

First Page Preview

First page PDF preview
You do not currently have access to this article.