Abstract

The Minastira granite, a c. 25 Ma subvolcanic plug of fine-grained granitic rock in the Cordillera Oriental of SE Peru, has preserved textures indicative of a history involving mixing of at least two magmas, a volumetrically dominant felsic component and a less voluminous mafic one. The felsic component is represented by variably fractured, altered and embayed crystals of quartz, feldspar, biotite with minor coarse-grained melt-and fluid-inclusion rich apatite, and possible cordierite (now a pseudomorphous Fe-Mg phase), whereas the mafic component is represented by calcic plagioclase. The process of magma mixing is reflected by: (1) ubiquitous sieved-textured plagioclase with complex textural relationships; (2) a large range in plagioclase compositions with reversals and spike patterns in profiles; (3) embayed and internally fractured (thermal shock?) quartz; (4) the rare occurrence of pyroxene coronas on quartz; and (5) textures within biotite suggestive of its incipient breakdown. The lack of mafic enclaves indicates that physico-chemical conditions of the mixing were conducive to homogenization (i.e. chemical diffusion) and a superficially homogeneous rock is now observed. The association of glomeroclasts of crystals originating from both the mafic and felsic end members and a quenched quartz-feldspar matrix indicate that the mixing occurred in an underlying magma chamber.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not currently have access to this article.