Abstract
The new mineral, vanadoallanite-(La), found in the stratiform ferromanganese deposit from the Shobu area, Ise City, Mie Prefecture, Japan, was studied using electron microprobe analysis and single-crystal X-ray diffraction methods. Vanadoallanite-(La) is a rare-earth element-rich monoclinic epidote-supergroup mineral with simplified formula CaLaV3+AlFe2+(SiO4)(Si2O7)O(OH) (Z = 2, space group P21/m) characterized by predominantly V3+ at one of three octahedral sites, M1. The crystal studied shows large V (~8.4 V2O3 wt.%), Fe(~13.8 Fe2O3 wt.%; Fe2+/total Fe = 0.58) and Mn (~8.8 MnO wt.%) contents. A small amount of Ti is also present (~1.3 TiO2 wt.%). Structural refinement converged to R1 = 2.96%. The unit-cell parameters are a = 8.8985(2), b = 5.7650(1), c = 10.1185(2) Å, β = 114.120(1)° and V = 473.76(2) Å3. The cation distributions determined at A1, A2 and M3 are Ca0.61Mn0.39, (La0.46Ce0.14Pr0.07Nd0.18)Σ0.85Ca0.15 and Mg0.06, respectively. On the other hand, depending on Ti assignment, two different schemes of the cation distribution at M1 and M2 can be considered: (1) M1()M2(Al0.92), and (2) M1()M2(Al0.92). In both cases, the dominant cations at A1, A2, M1, M2 and M3 are Ca, La, V3+, Al and Fe2+, respectively. According to ionic radius, Ti4+ possibly prefers M2 rather than Fe3+. A large Mn2+ content at A1 also characterizes our vanadoallanite-(La). The structural change of Mn2+-rich allanite-group minerals is considered to be controlled by two main factors. One is the large Mn2+ content at A1 in vanadoallanite-(La), which modifies the topology of the A1O9 polyhedron. The other is the expansion of M3O6 and M1O6 octahedra caused by large octahedral cations, such as Fe2+ and Mn2+, at M3 and the trivalent transition elements, V3+ and Fe3+, at M1.