The low-temperature structural behaviour of natural cancrinite with a formula Na6.59Ca0.93[Si6.12Al5.88O24](CO3)1.04F0.41·2H2O has been investigated by means of in situ single-crystal X-ray diffraction and Raman spectroscopy. High quality structure refinements were obtained at 293, 250, 220, 180, 140, 100 and at 293 K again (at the end of the low-T experiments). The variation in the unit-cell volume as a function of temperature (T) exhibits a continuous trend, without any evident thermoelastic anomaly. The thermal expansion coefficient αV = (1/V)∂V/∂T is 3.8(7) × 10−5 K−1 (between 100 and 293 K). The structure refinement based on intensity data collected at ambient conditions after the low-T experiment confirmed that the low-T induced deformation processes are completely reversible. The extraframework population does not show significant variations down to 100 K. The strong positional disorder of the carbonate groups along the c axis persists within the T range investigated. The structural behaviour of cancrinite at low-T is mainly governed by the continuous framework rearrangement through the ditrigonalization of the six-membered rings which lie in a plane perpendicular to [0001], the contraction of the four-membered ring joint units, the decrease of the ring corrugation in the (0001) plane, and the flattening of the cancrinite cages. A list of the principal Raman active modes in ambient conditions is provided and discussed.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.