Abstract
Charoite, ideally (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4·nH2O, is a rock-forming mineral from the Murun massif in Yakutia, Sakha Republic, Siberia, Russia, where it occurs in a unique alkaline intrusion. Charoite occurs as four different polytypes, which are commonly intergrown in nanocrystalline fibres. We report the structure of charoite-96 (a = 32.11(6), b = 19.77(4), c = 7.23(1) Å, β = 95.85(9)°, V = 4565(24) Å3, space group P21/m), which was solved ab initio by direct methods on the basis of 2676 unique electron diffraction reflections collected by automated diffraction tomography and refined to R1/wR2 = 0.34/0.37. The structure of charoite-96 is related to that of the charoite-90, which was also solved recently. Both structures are composed of three different types of dreier silicate chains running along [001] and separated by ribbons of edge-sharing Ca- and Na-centred octahedra. In the structure of charoite-96, adjacent blocks formed by three different silicate chains and stacked along the x axis, are shifted by a translation of ½ c. The shifts involve a hybrid dreier quadruple chain, [Si17O43]18− and a double dreier chain, [Si6O17]10−. In charoite-90 adjacent blocks are stacked without shifts.