Abstract
[Zn-Al] layered double hydroxides (LDH) with cationic molar ratios of R = Zn/Al 1–5 were synthesized by the coprecipitation method at constant pH = 10. The samples synthesized and their derived forms obtained after calcination at 500°C and at 900°C (denoted Zn-Al-R, Zn-Al-R-500 and Zn-Al-R-900, respectively), were characterized by X-ray diffraction (XRD), inductively coupled plasma-mass spectrometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy, diffuse reflectance spectroscopy and nitrogen physisorption at –196°C. The XRD study showed: (1) the presence of accessory ZnO with the LDH in samples synthesized with R ≥ 3; and (2) the lamellar structure was destroyed at 500°C which made room for a poorly ordered ZnO phase, while calcination at 900°C yielded well crystallized ZnO and ZnAl2O4. The photocatalytic activity of the calcined and the unheated samples was evaluated for the decolourization of methylene blue. The photocatalytic activity was dependent on the cationic ratio R and on the calcination temperature. The sample Zn-Al-3 displayed maximum photocatalytic activity. Calcination at 500 and 900°C improved the photocatalytic activity of LDH synthesized at R = 1 and 2.