Mineralogical Crystallography
At the dawn of structural crystallography, Walther Friedrich, Paul Knipping and Max von Laue carried out the first experiments and developed the theory of X-ray diffraction. From the early days, when even the simpler inorganic structures filled an entire PhD study, structural crystallography evolved at its own pace and found new partners in chemistry, physics, materials science, biology and other fields of physical sciences. Both morphological and structural crystallography, however, have remained as important instruments in the mineralogist’s toolbox until today. Efforts to enhance the existing instrumentation, to improve our understanding of the theory of diffraction, to study nanoparticulate or poorly ordered materials, and to master large, complex structures continue in all fields of physical sciences. Mineralogy can thus use the fruits of this labour and include them in its toolbox.
Aperiodic mineral structures
-
Published:January 01, 2017
The three-dimensional periodic nature of crystalline structures was so strongly anchored in the minds of scientists that the numerous indications that seemed to question this model struggled to acquire the status of validity. The discovery of aperiodic crystals, a generic term including modulated, composite and quasicrystal structures, started in the 1970s with the discovery of incommensurately modulated structures and the presence of satellite reflections surrounding the main reflections in the diffraction patterns. The need to use additional integers to index such diffractograms was soon adopted and theoretical considerations showed that any crystal structure requiring more than three integers to index its diffraction pattern could be described as a periodic object in a higher dimensional space, i.e. superspace, with dimension equal to the number of required integers. The structure observed in physical space is thus a three-dimensional intersection of the structure described as periodic in superspace.
Once the symmetry properties of aperiodic crystals were established, the superspace theory was soon adopted in order to describe numerous examples of incommensurate crystal structures from natural and synthetic organic and inorganic compounds even to proteins. Aperiodic crystals thus exhibit perfect atomic structures with long-range order, but without any three-dimensional translational symmetry.
The discovery of modulated structures was soon followed by the discovery of composite structures consisting of structural entities with partly independent translations and finally by the discovery of quasicrystals.
In recent years, the use of CCD and imaging plate systems improved considerably the sensitivity of data collection for aperiodic structures and in particular modulated structures and, therefore, there was a need for further improvement of the methods. Today, several computer programs are able to solve and refine incommensurately modulated structures using the superspace approach.
In nature, it is uncommon to find minerals which have strong and sharp incommensurate satellites that could be used for a higher dimensional refinement. Here we describe several cases of aperiodic minerals (natrite, calaverite, melilite, fresnoite, pearceite–polybasite, cylindrite) including the first examples of natural and stable quasicrystalline structures (icosahedrite and decagonite) which settle beyond doubt any questions which remain about the long-term stability of quasicrystals.
- calaverite
- carbonates
- computer programs
- coordination
- crystal chemistry
- crystal form
- crystal structure
- cylindrite
- data processing
- electron diffraction data
- mathematical methods
- melilite
- melilite group
- natural materials
- orthosilicates
- pearceite
- polybasite
- silicates
- sorosilicates
- stability
- sulfantimonates
- sulfantimonites
- sulfarsenites
- sulfosalts
- symmetry
- tellurides
- theoretical studies
- X-ray diffraction data
- fresnoite
- natrite
- quasicrystals
- icosahedrite
- incommensurate crystals
- decagonite
- aperiodic crystals
- incommensurately modulated structures