Skip to Main Content
Skip Nav Destination

Calcareous nannoplankton evolution: a tale of two oceans

Micropaleontology (2005) 51 (4): 299–308.
This article has been cited by the following articles in journals that are participating in CrossRef Cited-by Linking.
The Miocene: The Future of the Past
Paleoceanography and Paleoclimatology (2021) 36 (4)
Calcareous microfossils and paleoenvironmental changes across the Cretaceous-Paleogene (K-Pg) boundary at the Cerro Azul Section, Neuquén Basin, Argentina
Palaeogeography, Palaeoclimatology, Palaeoecology (2021) 567: 110217.
Ecological Response of Plankton to Environmental Change: Thresholds for Extinction
Annual Review of Earth and Planetary Sciences (2020) 48 (1): 403.
Middle Eocene large coccolithaceans: Biostratigraphic implications and paleoclimatic clues
Marine Micropaleontology (2020) 154: 101812.
Geochemical variations across the Jurassic/Cretaceous boundary in central Mexico. Insights for correlation with Tethyan areas
Journal of South American Earth Sciences (2020) 99: 102521.
Can morphological features of coccolithophores serve as a reliable proxy to reconstruct environmental conditions of the past?
Climate of the Past (2020) 16 (3): 1007.
The colonization of the oceans by calcifying pelagic algae
Biogeosciences (2019) 16 (12): 2501.
Global bioevents and the Cretaceous/Paleogene boundary in Texas and Alabama: Stratigraphy, correlation and ocean acidification
Global and Planetary Change (2019) 175: 129.
Orbitally Forced Hyperstratification of the Oligocene South Atlantic Ocean
Paleoceanography and Paleoclimatology (2018) 33 (5): 511.
Calcareous nannofossil changes linked to climate deterioration during the Paleocene–Eocene thermal maximum in Tarim Basin, NW China
Geoscience Frontiers (2018) 9 (5): 1465.
The Bajocian (Middle Jurassic): A key interval in the early Mesozoic phytoplankton radiation
Earth-Science Reviews (2018) 180: 126.
Living and thanatocoenosis coccolithophore communities in a neritic area of the central Tyrrhenian Sea
Marine Micropaleontology (2018) 142: 67.
Latest Cretaceous/Paleocene deep-sea ostracode fauna at IODP Site U1407 (western North Atlantic) with special reference to the Cretaceous/Paleogene boundary and the Latest Danian Event
Marine Micropaleontology (2017) 135: 32.
Increasing contribution of coccolithophorids to the phytoplankton in the northeastern Black Sea
Marine Pollution Bulletin (2017) 124 (1): 526.
Carbon cycle history through the Jurassic–Cretaceous boundary: A new global δ13C stack
Palaeogeography, Palaeoclimatology, Palaeoecology (2016) 451: 46.
Why marine phytoplankton calcify
Science Advances (2016) 2 (7): e1501822.
Calcareous nannofossil biostratigraphy and turnover dynamics in the late Campanian–Maastrichtian of the tropical South Atlantic
Revue de Micropaléontologie (2016) 59 (1): 57.
Phytoplankton dynamics from the Cambrian Explosion to the onset of the Great Ordovician Biodiversification Event: A review of Cambrian acritarch diversity
Earth-Science Reviews (2015) 151: 117.
Paleoenvironmental and paleobiological origins of coccolithophorid genusWatznaueriaemergence during the late Aalenian–early Bajocian
Paleobiology (2015) 41 (3): 415.
Life in the Aftermath of Mass Extinctions
Current Biology (2015) 25 (19): R941.
Genetic delineation between and within the widespread coccolithophore morpho-species Emiliania huxleyi and Gephyrocapsa oceanica (Haptophyta)
Journal of Phycology (2014) 50 (1): 140.
Middle Jurassic coccolith fluxes: A novel approach by automated quantification
Marine Micropaleontology (2014) 111: 15.
Biometry of Upper Cretaceous (Cenomanian–Maastrichtian) coccoliths – a record of long-term stability and interspecies size shifts
Revue de Micropaléontologie (2014) 57 (4): 125.
Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition
Biological Reviews (2014) 89 (1): 1.
Downsizing the pelagic carbonate factory: Impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years
Global and Planetary Change (2014) 123: 97.
Vertebrate palaeobiodiversity patterns and the impact of sampling bias
Palaeogeography, Palaeoclimatology, Palaeoecology (2013) 372: 1.
Cretaceous tetrapod fossil record sampling and faunal turnover: Implications for biogeography and the rise of modern clades
Palaeogeography, Palaeoclimatology, Palaeoecology (2013) 372: 88.
The response of calcifying plankton to climate change in the Pliocene
Biogeosciences (2013) 10 (9): 6131.
Evidence for a complex Valanginian nannoconid decline in the Vocontian basin (South East France)
Marine Micropaleontology (2012) 84-85: 37.
Impact of the Middle Jurassic diversification of Watznaueria (coccolith-bearing algae) on the carbon cycle and δ13C of bulk marine carbonates
Global and Planetary Change (2012) 86-87: 92.
Long‐term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO 2
Global Change Biology (2012) 18 (12): 3504.
A reassessment of ‘<i>Globigerina bathoniana</i>’ Pazdrowa, 1969 and the palaeoceanographic significance of Jurassic planktic foraminifera from southern Poland
Journal of Micropalaeontology (2012) 31 (2): 97.
Comparative quality and fidelity of deep-sea and land-based nannofossil records
Geology (2012) 40 (2): 155.
Seawater calcium isotope ratios across the Eocene-Oligocene transition
Geology (2011) 39 (7): 683.
Calcareous nannofossil assemblage changes from early to middle Eocene in the Levant margin of the Tethys, central Israel
Journal of Micropalaeontology (2011) 30 (2): 129.
The uppermost Middle and Upper Albian succession at the Col de Palluel, Hautes-Alpes, France: An integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy)
Cretaceous Research (2011) 32 (2): 59.
Mg isotopes and Mg/Ca values of coccoliths from cultured specimens of the species Emiliania huxleyi and Gephyrocapsa oceanica
Marine Micropaleontology (2010) 77 (3-4): 119.
Cenozoic record of elongate, cylindrical, deep-sea benthic foraminifera in the North Atlantic and equatorial Pacific Oceans
Marine Micropaleontology (2010) 74 (3-4): 75.
Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans
Proceedings of the National Academy of Sciences (2009) 106 (31): 12803.
Diversity dynamics of marine planktonic diatoms across the Cenozoic
Nature (2009) 457 (7226): 183.
Calcareous plankton evolution and the Paleocene/Eocene thermal maximum event: New evidence from Tanzania
Marine Micropaleontology (2009) 71 (1-2): 60.
Biomineralization by photosynthetic organisms: Evidence of coevolution of the organisms and their environment?
Geobiology (2009) 7 (2): 140.
Exceptionally well preserved upper Eocene to lower Oligocene calcareous nannofossils (Prymnesiophyceae) from the Pande Formation (Kilwa Group), Tanzania
Journal of Systematic Palaeontology (2009) 7 (4): 359.
First observations of heterococcolithophore–holococcolithophore life cycle combinations in the family Pontosphaeraceae (Calcihaptophycideae, Haptophyta)
Marine Micropaleontology (2009) 71 (1-2): 20.
Coccolithophore cell size and the Paleogene decline in atmospheric CO2
Earth and Planetary Science Letters (2008) 269 (3-4): 576.
Relationship between coccolith Sr/Ca ratios and coccolithophore production and export in the Arabian Sea and Sargasso Sea
Deep Sea Research Part II: Topical Studies in Oceanography (2007) 54 (5-7): 581.
A coccolithophore concept for constraining the Cenozoic carbon cycle
Biogeosciences (2007) 4 (3): 323.
A plausible link between the onset of Pangea break-up and the evolution of marine biocalcifiers through changes in atmospheric CO2 and ocean chemistry
Geochimica et Cosmochimica Acta (2006) 70 (18): A206.
Close Modal

or Create an Account

Close Modal
Close Modal