Our recent field investigations in western Pakistan have revealed that serpentinized peridotites here are crosscut by numerous intrusions of gabbro and tonalite. New zircon U–Pb dating of these plutons indicates Late Cretaceous–Early Eocene ages of their crystallization. They have arc-like geochemical signatures and constitute the middle crust of an island arc complex. Together with their extrusive counterparts they form the RasKoh island arc (RIA), defined for the first time in this study. The RIA and the Chaiga continental arc to the north represent the manifestations of two separate subduction zone systems within Neotethys, developed between India and Eurasia. We posit that this Neotethyan domain contained two oceanic plates. Subduction of the leading plate beneath Eurasia generated the Jurassic–Late Oligocene Chaiga continental arc, and the northward subduction of the trailing plate resulted in the development of the Late Cretaceous–Oligocene, ensimatic RasKoh arc. Arrival of the Indian subcontinent at the latitude of the RasKoh arc in the earliest Miocene caused the emplacement of the RasKoh arc onto India via oblique arc–continent collision. The subsequent collision of this composite Indian plate with Eurasia resulted in extensive deformation of Late Cretaceous flysch deposits and the ophiolitic arc basement.

Thematic collection: This article is part of the Ophiolites, melanges and blueschists collection available at: https://www.lyellcollection.org/topic/collections/ophiolites-melanges-and-blueschists

Supplementary material:https://doi.org/10.6084/m9.figshare.c.6795686

This content is PDF only. Please click on the PDF icon to access.
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.