Abstract

Low-Cr and high-Cr clinopyroxene, garnet, olivine, and ilmenite megacrysts from the Muskox kimberlite (Canada) have been analyzed for major and trace elements, as well as Sr, Nd, and Pb isotopes. Samples display compositional overlap with respective phases in websterite, while clinopyroxene isotope systematics reveal similarities with both websteritic and metasomatic clinopyroxene in peridotites from the same kimberlite, in addition to Muskox and Jericho kimberlite. All lithologies may represent the products of mixing between EM1 mantle, relic Proterozoic enriched mantle and HIMU carbonatitic fluid. Equilibrium melts calculated from clinopyroxene trace element data using experimental distribution coefficients for feasible proto-kimberlitic melts yield a range of possible metasomatic agents. Conclusion on the carbonate-bearing nature of the metasomatism was based on the presence of a HIMU isotopic signature and results obtained from thermodynamic modeling using the Deep Earth Water model. The latter shows that mineral compositions analogous to megacrysts cannot be produced by metasomatism of mantle peridotite by H2O-rich kimberlitic fluids, or fluids in equilibrium with either asthenospheric or eclogitic mantle. Isotope systematics argue against a strictly cognate relationship between megacrysts and their host kimberlite, instead suggesting megacrysts and websterites may represent products of regional metasomatism by carbonatitic HIMU fluids shortly predating kimberlite magmatism.

Supplementary material: Supplementary Table 1 contains the parameters used in isotopic mixing models https://doi.org/10.6084/m9.figshare.c.5255825

You do not currently have access to this article.