Abstract

The building of the Apennine belt slowed down or significantly ceased around the Early Pleistocene. Since then, the belt has undergone strong uplift and considerable distortion. Such change, from belt-normal to belt-parallel shortening, has been determined by the fact that the continental Adriatic domain (Adria) was almost completely surrounded by buoyant orogenic structures. In that context, the mobility of Adria underwent a considerable reduction, while uplift and deformation of its southern part was strongly emphasized as an effect of the convergence of the confining plates. Around the middle Pleistocene, the deformation pattern in the periAdriatic zones changed again, in response to acceleration of Adria. The outer (Adriatic) sector of the Apennine belt underwent belt parallel shortening, accommodated by uplift and outward escape of upper crustal wedges. The separation between the extruding wedges and the almost stable inner belt has generated a series of extensional /transtensional fault systems along the axial part of the Apennines, that now correspond to the main seismogenetic sources. The spatio-temporal distribution of major tectonic events in the study area can be plausibly explained as an effect of the least-action principle

You do not currently have access to this article.