The Hudson Bay sedimentary basin was overlooked geologically until two decades ago. Recent efforts to understand the palaeogeothermal history of this basin have led to the evaluation of fluid inclusion microthermometry, apatite fission track, organic matter reflectance and Rock–Eval analyses. Although apatite fission track and organic maturity indicators tend to show relatively low maximum burial temperatures (60–80°C), evidence of potential oil slicks on the sea surface and oil and gas shows in offshore wells have been reported across Hudson Bay. Fluid inclusion microthermometry in a carbonate mound sequence suggests homogenization temperatures of 118 ± 25 and 93 ± 10°C for recrystallized synsedimentary marine calcite and late pore-filling burial calcite, respectively. This sequence provides an interesting geological framework to test the application of clumped isotope thermometry against independent geothermometers. Here, we present clumped isotope data acquired on the late calcite cements and diagenetically altered early marine phases. The integration of clumped isotopic data with other thermal indicators allows the reconstruction and refinement of the thermal–diagenetic history of these carbonates by confirming an episode of heating, probably of hydrothermal origin and prior to normal burial diagenesis, that reset both fluid inclusions and the clumped isotope indicators without recrystallization.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.